Two-Layer Viscous Shallow-Water Equations and Conservation Laws
نویسندگان
چکیده
منابع مشابه
Central-Upwind Schemes for Two-Layer Shallow Water Equations
We derive a second-order semi-discrete central-upwind scheme for oneand two-dimensional systems of two-layer shallow water equations. We prove that the presented scheme is wellbalanced in the sense that stationary steady-state solutions are exactly preserved by the scheme, and positivity preserving, that is, the depth of each fluid layer is guaranteed to be nonnegative. We also propose a new te...
متن کاملShallow Water Equations: Viscous Solutions and Inviscid Limit
We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical NavierStokes equations for barotropic gases; thus the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, w...
متن کاملViscous Conservation Laws, Part I: Scalar Laws
Viscous conservation laws are the basic models for the dissipative phenomena. We aim at a systematic presentation of the basic ideas for the quantitative study of the nonlinear waves for viscous conservation laws. The present paper concentrates on the scalar laws; an upcoming Part II will deal with the systems. The basic ideas for scalar viscous conservation laws originated from two sources: th...
متن کاملCentral schemes for conservation laws with application to shallow water equations
An overview is given of finite volume central schemes for the numerical solution of systems of conservation and balance laws. Well balanced central schemes on staggered grid for the Saint-Venant model or river flow are considered. A scheme which is well balanced for channels with variable cross section is introduced. Finally, a scheme which preserves non static equilibria is introduced, and som...
متن کاملConservation Laws for Shallow Water Waves on a Sloping Beach
Shallow water waves are governed by a pair of non-linear partial differential equations. We transfer the associated homogeneous and non-homogeneous systems, (corresponding to constant and sloping depth, respectively), to the hodograph plane where we find all the non-simple wave solutions and construct infinitely many polynomial conservation laws. We also establish correspondence between conserv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Science and Technology
سال: 2009
ISSN: 1881-6894
DOI: 10.1299/jcst.3.373